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Abstract— Maps of dynamics are effective representations
of motion patterns learned from prior observations, with
recent research demonstrating their ability to enhance various
downstream tasks such as human-aware robot navigation, long-
term human motion prediction, and robot localization. Current
advancements have primarily concentrated on methods for
learning maps of human flow in environments where the flow
is static, i.e., not assumed to change over time. In this paper
we propose an online update method of the CLiFF-map (an
advanced map of dynamics type that models motion patterns as
velocity and orientation mixtures) to actively detect and adapt
to human flow changes. As new observations are collected, our
goal is to update a CLiFF-map to effectively and accurately in-
tegrate them, while retaining relevant historic motion patterns.
The proposed online update method maintains a probabilistic
representation in each observed location, updating parameters
by continuously tracking sufficient statistics. In experiments
using both synthetic and real-world datasets, we show that
our method is able to maintain accurate representations of
human motion dynamics, contributing to high performance
flow-compliant planning downstream tasks, while being orders
of magnitude faster than the comparable baselines.

I. INTRODUCTION

Safe and efficient operation in complex, dynamic and
densely crowded human environments is a critical prerequi-
site for deploying robots in various tasks to support people
in their daily activities [1, 2, 3]. Considerable efforts are
dedicated to support the deployment of mobile robots by
enabling them to follow social norms and achieve legible
and socially compliant navigation [4].

Extending the environment model with human motion pat-
terns using a map of dynamics (MoD) is one way to achieve
unobtrusive navigation compliant with existing motion flows
in the environment [5, 6], or avoid crowded areas [7]. MoDs
are an increasingly popular tool to store spatial-temporal
information about patterns of motion in an environment, such
as the motions of humans [8]. Maps of dynamics extend the
geometric world model, improving the temporal and contex-
tual awareness of the robot’s own configuration space. These
maps are useful for several downstream tasks, e.g. to predict
long-term motion trajectories [9, 10], improve localization in
dynamic environments [11] and robot navigation in crowded
spaces [12], particularly planning safe and unobtrusive trajec-
tories [5, 13] and efficiently allocating complex tasks [14]. In
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Fig. 1: Online update results of toy example data compared with using
only new observations and using all observations to build the model.
The top row shows raw observations for each of the eight directions
(0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦), provided in each iteration
k. Blue arrows depict the mean vectors of a CLiFF Gaussian mixture
model, with transparency indicating the component weights. Three modeling
approaches are compared: the second row shows models built using only
observations from the current iteration k; the third row shows models built
with cumulative observations from iteration 1 to k, which are overgener-
alized and fail to prioritize recent observations; the fourth row shows the
proposed online update method, which incorporate new data while retaining
relevant historical patterns, offering a dynamic representation of the motion
pattern over time.

particular, the CLiFF-map (circular-linear flow field) [15] is a
powerful and flexible representation to store velocity, orien-
tation and turbulence of the multi-modal human motion flows
in the environment, implicitly incorporating such features as
common goal locations, restricted areas and other semantic
attributes [16]. Practically implemented on a robot, CLiFF-
map generalizes prior observations in a compact spatial
representation that can be efficiently queried by downstream
components.

However, prior art typically assumes that once learned,
the map of dynamics remains constant [17], or follows fixed
periodic patterns every day [18]. In reality, as the robot
operates continuously, the motion patterns may change due to
various events or alterations in the environment topology and
semantics [14]. The map of dynamics should actively detect
and accommodate these changes. This motivates the need
for an online update method, similar to the one developed
for iterative improvement of periodic maps of dynamics [19].
Furthermore, as the robot operates over extended periods, the
accumulation of human observation data makes rebuilding
the map from scratch increasingly costly. An online learning
model becomes practical and necessary in scenarios where
handling large datasets is infeasible due to storage limita-
tions or privacy concerns. This situation motivates the need
for incremental and efficient map updates, which augment
previously accumulated knowledge with recent observations
without retaining all past dynamics samples.

In this paper we propose a method for online updating of
the CLiFF-map of dynamics for mobile robots using a vari-
ation of the stochastic expectation maximization algorithm.
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As new observations are collected, our goal is to update the
existing representation to effectively and accurately integrate
the new information. At the same time, the robot should
not immediately dismiss previously learned patterns while
avoiding the need to store the entire historical dataset. The
proposed online update method maintains the probabilistic
representation in each observed location, updating parame-
ters by continuously tracking sufficient statistics. As shown
in Fig. 1, our method not only ensures that the model remains
adaptively accurate in reflecting the most recent human
motion but also maintains consistency with historical data,
thereby preserving a comprehensive understanding of the
environment over time. In experiments on both a synthetic
dataset and the real-world ATC [20] dataset, we show that
our method quickly recognizes changes in environments with
sparse and dense motion flows, while being significantly
faster than baseline methods. Qualitative results further show
that the maps learned with our online update method repre-
sent recent trajectories more accurately, and are therefore
better suited for informing planning algorithms.

II. RELATED WORK

There are several types of Maps of Dynamics (MoDs)
described in the literature, generally striving to provide an
efficient tool for storing and querying information about his-
torical or expected changes in states within the environment.
Some MoDs model the expected state of occupancy or other
binary signals [11, 21], or recurring discrete states of ob-
jects [22]. MoDs can be built from various sources of input,
such as trajectories [23], dynamics samples, or information
about the flow of continuous media (e.g., air or water) [24].
Furthermore, these models can feature diverse underlying
representations, including evidence grids, histograms [25],
graphs, or Gaussian mixtures. We refer the reader to [8] for
a comprehensive survey. In this section, we will focus on
MoDs that are designed for, or have been applied specifically
to, the motion of people (trajectories, directions, velocities).

Bennewitz et al. [23] learn a collection of human motion
patterns from clustered trajectory data (with k-means cluster-
ing), using Gaussian mixtures and expectation maximization
(EM). A drawback of this method is that such clustering does
not lend itself well to online updates with new data and
relies on having complete observations of full trajectories
in order to cluster the motion patterns that make up the
map. Doellinger et al. [26] employ a convolutional neural
network trained on simulated trajectories to predict where
people are likely to walk, based on an input occupancy grid
map. While it does not require full trajectories for training, it
cannot easily integrate new observations to update the model.
Similarly, [27] predicts a map of dynamics given a static
occupancy map. However, the output map in this case is
a Bayesian floor field, where each point in the map stores
the probabilities of observing motion along a discrete set of
directions, rather than only the probability of occupancy.

The CLiFF-map representation [15] has been used recently
to facilitate efficient human-aware motion planning [5, 13, 6]

and long-term human motion prediction [28, 9, 29]. CLiFF-
map represents local flow patterns as a multi-modal, contin-
uous joint distribution of speed and orientation, as further
described in Section III. A benefit of CLiFF-map is that
it can be built from incomplete or spatially sparse velocity
observations [29], without the need to store a long history of
data or deploy advanced tracking algorithms. However, like
most other types of existing MoDs, including those men-
tioned above, CLiFF-maps are typically built offline. A key
reason for this is the high computational costs associated with
the building process. This constraint limits their applicability
in real environments, where patterns can change over time,
e.g. due to changes in environment topology and semantics.

STeF-map [18] is another representation that builds a local
motion model per cell of a grid map. STeF-map uses a
discrete set of eight directions, maintaining a model of when
motion can be observed at that point in that direction to learn
periodic flow patterns. As a periodic spatiotemporal map
of dynamics, it can be used to predict activities at specific
times of the day, under the assumption that the periodic
patterns exist in this environment. Most closely related to the
present work is [19], which uses incremental online updates
to iteratively improve the periodic patterns in the STeF-map.
In contrast, we assume that the map may be non-stationary
(e.g., due to changing obstacle configurations or temporary
external conditions [16]), and our online update is designed
to adapt to such changes quickly, while not forgetting past
flow patterns.

To enable incremental online updates of the CLiFF-map,
we use a stochastic expectation maximization algorithm [30]
to process streaming data, as further described in Section III,
and to achieve an accurate representation of dynamics,
gradually balancing historical observations with more recent
samples, as demonstrated in Section V.

III. ONLINE CLIFF-MAP UPDATE METHOD

A. Problem statement

A given geometric environment is denoted as M ⊆
R2, which is discretized to a set of locations L =
{loc1, loc2, ..., loc|L|}. Each location locl ∈ L aggregates
observations collected within a radius r of locl. Our aim is to
learn a dynamics model at each location that effectively and
accurately represents non-stationary local motion patterns.
As new observations become available, the model will be
dynamically updated to integrate the information from them.

B. Definitions

CLiFF-map represents motion patterns using multimodal
statistics to represent speed and orientation jointly [15]. In
the CLiFF-map, each location is associated with a Semi-
Wrapped Gaussian Mixture Model (SWGMM) [31] to cap-
ture the dependency between the speed and orientation,
representing motion patterns based on local observations.

The SWGMM represents speed and direction jointly as
velocity V = [θ, ρ]⊤ using direction θ and speed ρ, where
ρ ∈ R+, θ ∈ [0, 2π). This semi-wrapped probability density
function (PDF) over velocities can be visualized as a function



Algorithm 1: Online MoD update
Input: Number of observing iterations K
Output: online-CLiFF-map Ξloc1,..,loc|L|

1 for k = 1, ...,K do
2 for locl = loc1, ..., loc|L| do
3 yk ← getObservation(locl)
4 if Ξlocl = ∅ then
5 Ξlocl ← buildCLiFFmap(yk)
6 else
7 ŝk ← sE–step
8 m1,..,J , µ1,..,J , Σ1,..,J ← M–step

9 return Ξloc1,..,loc|L|

on a cylinder. Direction values θ are wrapped on the unit
circle and the speed ρ runs along the length of the cylinder.

Since the direction θ is a circular variable and the speed
is linear, a mixture of semi-wrapped normal distributions
(SWNDs) is used. Encoding the multimodal characteristic
of human motion flow, an SWGMM is a PDF represented
as a weighted sum of J SWNDs:

p(V|ξ) =
J∑

j=1

mjN SW
Σj ,µj

(V), (1)

where ξ = {ξj = (mj ,µj ,Σj)|j ∈ Z+} denotes a finite
set of components of the SWGMM, mj denotes the mixing
factor and satisfies 0 ≤ mj ≤ 1, and an SWND N SW

Σ,µ is
formally defined as

N SW
Σ,µ(V) =

∑
w∈Z

NΣ,µ([θ, ρ]
⊤ + 2π[w, 0]⊤), (2)

where Σ,µ denote the covariance matrix and mean value of
the directional velocity (θ, ρ)⊤, and w is a winding number.
Although w ∈ Z, the PDF can be approximated adequately
by taking w ∈ {−1, 0, 1} for practical purposes [32].

When the first batch of observations for location locl is
available, SWGMM parameters are estimated using expecta-
tion maximization (EM) [33] along with mean shift [34] to
obtain the number and initial positions of dynamics modes.
When collecting new observations at the same location locl,
SWGMM parameters are updated using the stochastic EM
method (sEM [30]), which is a fast online variant of the
EM algorithm. In sEM, the expectation step of the original
EM algorithm is replaced by a stochastic approximation step,
while the maximization step remains unchanged.

C. Online map update algorithm

The online update method is summarized in Alg. 1. During
each observation iteration, the online CLiFF-map is built and
updated with new observations. Let k ≥ 0 be the iteration
number for collecting observations. During iteration k, at
location locl, new observations yk are collected over the
time interval [t, t + ∆t] (line 3 of Alg. 1). If no model
has previously been built at locl, i.e., no motion has been
observed at locl yet, an SWGMM will be initiated with yk

(line 5 of Alg. 1), where yk denotes the set of velocity

vectors observed in iteration k of human motion. Otherwise,
yk will be used to update the existing model for locl.
The variable Nk represents the number of new observations
collected at locl during the interval. Let ŝk be the estimated
sufficient statistics at iteration k, for each component j,
where ŝj is composed of (s(1)j , s

(2)
j , s

(3)
j ) and the initial value

ŝ0 computed using Eq. (7) and initial observations. Sufficient
statistics contain all the information needed to estimate
model parameters. The sEM method tracks the sufficient
statistics using a stochastic approximation procedure. The
SWGMM parameters, m, µ and Σ are then updated using
sEM, which consists of two sub-steps:

sE-step: ŝk = ŝk−1 + γk(Sk − ŝk−1), (3)

M-step: mj = ŝ
(1)
j , (4)

µj = (ŝ
(1)
j )−1ŝ

(2)
j , (5)

Σj = (ŝ
(1)
j )−1ŝ

(3)
j − µjµ

⊤
j . (6)

In the sE–step, the sufficient statistics of SWGMM are
computed and updated with a sequence of stepsizes (γk)k≥1.
For iteration k and SWGMM components j ∈ [1, J ], the
sufficient statistics Sk is composed of (S(1)

j , S
(2)
j , S

(3)
j ). For

partitions of the sufficient statistics p ∈ [1, 3], we have
S
(p)
j = N−1

k ΣNk
i=1S

(p)
i,j . For each observation i, the observed

data is yi, Si,j is

S
(1)
i,j = ηi,j , S

(2)
i,j = ηi,jyi, S

(3)
i,j = ηi,jyiy

⊤
i , (7)

where the responsibility η is

ηi,j =
mjN SW

Σj ,µj
(yi)

ΣJ
j=1mjN SW

Σj ,µj
(yi)

. (8)

In each iteration k, the step size γk determines the impact
of new observations on the model. To effectively update the
model, we consider two factors: the motion intensity and the
time elapsed since observation. Observations that occurred
a long time ago are considered less important than more
recent ones. To incorporate them, we use a dynamically
decreasing total number of observations as an indicator,
Nk

ind = λNk−1
ind + Nk, where 0 < λ < 1 is the decay rate.

The step size γk is defined as the ratio of the size of the
new observations to Nk

ind, γk = Nk/N
k
ind. This ensures the

influence of each new observation diminishes over time as
more observations are accumulated, and more recent data
have a proportionally higher influence than older ones. This
dynamic adjustment helps the model gradually incorporate
new information while reducing the weight of the older data
points. During the online update, if the new observations do
not fit the current model, the number of SWGMM compo-
nents is increased based on the condition

∑J
j=1

∑Nk

i=1 ηi,j <
ηthres, where ηthres is a predefined threshold. A smaller
ηthres makes it easier to classify new observations as not
fitting well with the current model, thereby triggering an
adjustment in the number of SWGMM components. The
updated SWGMM then consists of both previous and new
SWNDs, built using recent observations. Their weights are
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Fig. 2: The den520d synthetic dataset simulates trajectories between posi-
tions S1, S2, G1 and G2. The initial flow is shown in Condition A (left).
To simulate the flow change, the start (S1, S2) and goal (G1, G2) positions
are switched Condition B (right), reversing the dominant flow direction.

scaled by γk for new SWNDs and 1− γk for previous ones.
All weights are then normalized to integrate the historical
and new components within the model.

IV. EXPERIMENTS

A. Datasets

We evaluate the online CLiFF method and a set of
baselines on both real-world and synthetic datasets. To reflect
the iterative nature of building the maps of dynamics from
older and more recent observations, we divide each dataset
into batches of trajectory data, corresponding to the input
iterations as observed by the robot. The aim is to show how
well the most recent map of dynamics, calculated with our
method and each baseline, represents the trajectory data from
the most recent iteration. The datasets used and how they
were divided into batches are described below.

den520d: To evaluate the performance of the online update
model in scenarios where human flow changes, we introduce
a synthetic dataset den520d. This dataset is generated using a
map from the Multi-Agent Path-Finding (MAPF) Benchmark
[35] and features two distinct flow patterns: Condition A
and Condition B, see Fig. 2. We simulate a change in
human flow from Condition A to Condition B, where the
dominant flow in Condition B is reversed compared to that in
Condition A. Furthermore, the den520d dataset is used in the
downstream robot navigation task (see Sec. IV-E) to assess
its practical application in flow-aware planning. We discretize
the den520d obstacle map with 1m cell resolution. In this
map, randomized human trajectories are simulated using
stochastic optimal control path finding, based on Markov
decision processes [36]. In each condition 1000 trajectories
are generated. We use the condition B for evaluation in a
downstream task (robot motion planning) in Fig. 7.

ATC: To evaluate the MoD online update in a real-world
dataset with scenarios where human motion patterns change
during the day, we use the ATC dataset [20]. Using multiple
3D range sensors, the trajectories were collected between 9
am and 9 pm on Wednesdays and Sundays, including 92 days
of observations in total. We use the data from the entire first
day for evaluation.

In the experiments across both datasets, the grid resolution
for MoD is set to 1m. The observation rate is downsampled
from above 10Hz to 1Hz. In our quantitative evaluation, for

each condition in the den520d or each hour in the ATC, we
randomly sample 10% of the data for testing and use the
remaining 90% for training.

B. Baselines

We evaluate several variations of processing the data
sequentially using CLiFF-map, and additionally evaluate the
prior art STeF-map. The variations in applying CLiFF-map
to sequential data include: our online update model (referred
to as online), a model built from all observations in iteration
1 to k (referred to as history) and a model with observations
only in iteration k (referred to as interval). When training the
CLiFF-map, the convergence precision is set to 1e–5 for both
mean shift and EM algorithms, with a maximum iteration
count of 100. For online update model, ηthres is set to 0.1.

STeF-map [18] is a spatio-temporal flow map, which mod-
els the likelihood of human motion directions on a grid-based
map using harmonic functions. STeF-map captures long-term
changes of crowd movements over time. Each cell in the grid
map contains kstef temporal models, corresponding to kstef
discretized orientations of people moving through the given
cell over time. As suggested in [18], kstef is set to 8 in the
experiments and the model orders for training STeF-map, i.e.
the number of periodicities, is set to 2. In our experiments,
STeF-map is evaluated using the ATC dataset. Due to the
characteristics of STeF-map, it can only be applied to data
that exhibit meaningful periodic time variations and therefore
lends itself better to datasets that span multiple days.

C. Metrics

To quantitatively evaluate the accuracy of modeling human
motion patterns (MoD model quality), we use negative log
likelihood (NLL) as the evaluation metric. The average NLL
is computed for the most recent maps of dynamics over the
corresponding test portion of the dataset. A lower NLL value
indicates better accuracy. If no dynamics pattern is available
for a given location – a situation more frequent with interval
models, which may fail to capture complete motion patterns
due to limited data in the recent iteration – the likelihood is
set to a very low value (1e–9). For runtime evaluation, we
report the runtime across all iterations, measured in minutes.

D. Robot deployment

To verify the method application on a real robot using live
input from a human perception stack, we collected motion
data of several people in a small indoor environment (40m2)
in four periods (approx. three minutes of observation each).
Each period has a unique motion pattern, e.g. in changing
the direction of movement and turns.

E. Downstream task: human-aware motion planning

In order to evaluate the effects of having more accurate
maps of dynamics in the downstream task, we use the
den520d dataset to demonstrate socially-compliant flow-
aware motion planning. With the den520d map, an A*
algorithm [37] modified to use flow-aware costs [13] is used
for generating socially-aware paths for agents.



Dataset Average NLL
Online (ours) Interval History STeF-map

ATC 1.18 2.61 1.23 4.38
den520d 1.41 2.36 1.65 -

TABLE I: Evaluation results on the ATC and den520d datasets using average
negative log likelihood (NLL) as the metric. Lower values are preferable.
Values in bold indicate the best performance.
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Fig. 3: Runtime of each iteration in the ATC (left) and den520d (right)
datasets. In den520d, the first 10 batches are in Condition A and the second
10 batches are in Condition B. In both datasets, the online model shows
significantly reduced runtime compared to the history and interval models.

V. RESULTS

In this section, we present the results obtained in the
ATC and den520d datasets with our approach compared to
baselines. The performance evaluation is conducted using
both quantitative and qualitative analysis.

A. Quantitative evaluation

1) Runtime: The first experiment evaluates the runtime
of the online method, compared to the history model and
interval model, in both datasets. We use a desktop computer
with an Intel i9-12900K processor running Ubuntu 20.04.
As shown in Fig. 3, the online update model exhibits signif-
icantly reduced computation time compared to the interval
and history models. In the initial iteration, the MoD is
empty, and all three models are built from scratch using
all available observations. Subsequently, the online update
model computes the sufficient statistics with Nk observations
in each iteration. In contrast, the interval model runs the
EM algorithm to converge (to 1e–5) using Nk observations,
and the history model processes cumulative, ΣK

k=1Nk ob-
servations. On average, over all iterations, the online model
requires 0.1% of the time used by the history model in ATC
and 0.2% in den520d dataset.

2) Accuracy: The second experiment evaluates the accu-
racy of modeling human motion patterns. We present the
average negative log likelihood (NLL) values, with lower
values indicating better modeling accuracy. These values are
optimized using the decay rate parameter. Table I shows how
well the MoDs reflect changes in human dynamics, using
trajectory data from Condition B of the den520d dataset and
the last hour of the ATC dataset.

Compared to the STeF-map, which discretizes orientations
into eight bins, the CLiFF-map provides a continuous proba-
bilistic representation of velocities, achieving better accuracy
in modeling human motion patterns. Among variations of
CLiFF-map construction, the online update model achieves
the best accuracy when the motion patterns change, as it
accurately captures these changes while maintaining flow
completeness. In contrast, the history model fails to adapt
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Online
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Fig. 4: An example from the east corridor in the ATC dataset. Blue
arrows show the mean vectors of SWGMMs, with transparency indicating
component weights. The interval model (top row) uses only the last 60
minutes of data, disregarding previously learned patterns (e.g., at 2 PM
and 3 PM). The history model (second row), which treats all observations
equally, tends to obscure patterns and fails to capture dominant movements
effectively. Conversely, the online model (third row) adapts more effectively
to changing flows and accurately represents the primary patterns.
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Fig. 5: Left: NLL evaluation results at different times of a day in the ATC
dataset. The STeF-map struggles to accurately capture human motion flow,
resulting in poor performance. Notably, the interval model exhibits worse
NLL results mostly after 16:00. It struggles to capture the full spectrum
of motion patterns and is not able to effectively manage outlier trajectories
outside of the main flow. Right: NLL evaluation results over batches in
Condition B of the den520d dataset. The online model quickly adapts to
changes in human flow, achieving lower NLL values in fewer batches.

to changes in human flow, and the interval model suffers
from insufficient data within its given interval, leading to
several parts of the map having no flow representation,
failing to preserve flow completeness. In the ATC dataset,
the most notable human motion pattern changes occur in
the east corridor. A detailed view of this area is provided
in Fig. 4, where the online update model’s adaptations are
shown, transitioning from predominantly upward movement
to primarily downward movement.

Fig. 5 shows the evaluation results for each hour in the
ATC dataset and each batch in Condition B of the den520d
dataset. In the ATC dataset, STeF-map struggles to accurately
capture human motion flow, resulting in poor performance.
The interval model exhibits worse NLL results, mostly after
16:00, due to its failure to capture the full spectrum of motion
patterns. During the middle of the day, when hourly motion
patterns are closer to the general motion pattern, the history
model performs better by leveraging accumulated data over
time. However, without prioritizing recent observations, the
history model fails to accurately reflect the most recent
motion patterns. In contrast, the online model, with its ability
to effectively adapt to changes, achieves better performance
in the last hour of the ATC dataset. In the den520d dataset,
which exhibits a clear flow change from Condition A to
Condition B, the history model takes more batches to reflect
the flow change, while the online model quickly adapts to
changes and achieves lower NLL values in fewer batches.
Parameter analysis: We evaluate the average NLL value
with different decay factor values λ, varying from 0.1 to 0.9,
in both ATC and den520d datasets. The evaluation results
are shown in Fig. 6. We observe robust performance across
different decay rate values.
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Fig. 6: Evaluation results of the average NLL for the online update models
in the ATC and den520d datasets using various decay rates, showing robust
performance.
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Fig. 7: Flow-aware robot navigation results (left), using the den520d map,
where we use an A* algorithm [37] modified to use flow-aware costs [13]
to generate the agent’s path. The MoD of the online model is depicted as an
underlying reference for flow direction. Starting from the upper-left corner,
the MoD from the history model (right) fails to adapt to flow changes.
Consequently, the generated path continues to follow the previous human
flow from Condition A, contradicting the current flow in Condition B. In
contrast, the online method, which quickly adapts to flow changes, enables
the agent to navigate in alignment with the existing human flow.

B. Qualitative evaluation

Fig. 7 shows the CLiFF-maps built with online and history
models in Condition B of the den520d dataset. When human
flow shifts from Condition A to B, the online model quickly
accommodates the change, while the history model preserves
both flow directions and struggles to adapt. This inaccuracy
in the MoD built by the history model affects the downstream
task of flow-aware robot navigation; as shown in Fig. 7 (left),
the path generated using the history model continues to align
with the previous human flow from Condition A, which
contradicts the current flow in Condition B, resulting in
increased collisions. Conversely, the online method quickly
adapts to flow changes, enabling the agent to navigate in a
manner that aligns with the current flow pattern.

In the real-robot experiment, we use live input from a
human perception stack, with each period showing a unique
motion pattern. To demonstrate the runtime bottleneck of
baseline methods for real-time applications, we compare
runtime on the most recent batch of observations. The history
and interval models require 990 s and 29 s, respectively, mak-
ing them impractical for real-time deployment. In contrast,
the proposed online model runs in 5 s, using only 0.5% of
the history model’s time, making it more suitable for real-
time operation. When comparing the quality of the generated
MoD, Fig. 8 shows that in the last period, while the history

History

Interval

Online

Period 1 Period 2 Period 3 Period 4

a b

Fig. 8: Models built from real-world data collected from the robot. This
experiment highlights that using all historical data typically converges to
the possibility of motion in all directions, whereas the online model reflects
the dominance of recent observations, while maintaining the completeness
of human flow. For instance, the parts of the map influenced by Periods 3
and 4, highlighted by circles a and b), are captured more accurately by the
online model (bottom row), compared to the history model (top row).

model contains motion possibilities in all directions, and the
interval model completely forgets previous information and
leaves parts of the map of dynamics blank, the online model
effectively maintains the dominance of recent observations
while keeping the completeness of human flow.

VI. CONCLUSION

In this work we propose a method for online updates of
the CLiFF-map of dynamics representation, enabling it to
quickly adapt to human flow changes. We use the stochastic
expectation maximization algorithm to update the existing
representation when new observations are collected. The
method is evaluated using both synthetic and real-world
datasets, and compared with three baselines. Additionally,
we evaluate the method in a downstream task of socially-
compliant, flow-aware motion planning. The results demon-
strate that our online version can efficiently and accurately
accommodate changes in human motion patterns. Further-
more, it is significantly faster than the baselines and avoids
the large memory consumption associated with storing the
entire dataset of historic observations.

The proposed method has limitations. As a result of our
experiments with various modes of tracking the dynamics
observation history, we notice that maintaining an up-to-
date MoD is a challenging problem due to the need to
balance the historic patterns vs. deciding when the data is
outdated [38]. While the proposed online update method
significantly improves runtime, making it practical for real-
time robotics applications, it may not always deliver optimal
performance. In situations where dynamic patterns and flow
of motion in the environment are complex, historical models
can achieve better accuracy as they are better equipped to
handle outlier trajectories that deviate from the main flow
pattern. Conversely, when the human motion flow is more
laminar and there is sufficient current observational data to
accurately represent human flow, the interval model may
capture the most accurate patterns of human motion and
can serve as a benchmark for evaluation. In these instances,
the online update methods may perform less effectively
compared to the interval model.

In future work we intend to use the online update method
as an initial building block to enable efficient robot explo-
ration in dynamic environments.
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